大数据是什么意思?

大数据顾名思义就是海量的数据堆在一起,就现成了大数据,大数据分实时时间和历史数据,大数据又分it数据,ot数据,视频时间,图像数据,时空数据等多类型数据,大数据的目的就是实现更智慧,更智能。大数据不去挖掘分析就是一堆无用的数据,所以就必须各种行业应用专家去建模,去分析挖掘。因此在大数据面前,行业专家最吃香,码农一抓一大把,模型专家有几个。对于企业大数据分析挖掘可以为企业提高效率,提高品质,降低成本等等若干优点,越是规模大的企业,大数据挖掘价值越大,给你举2个例子,一个就是九江某石化公司,没有进行大数据挖掘优化前年年亏损,挖掘优化后,他的效率提高了,他的品质提供了,现在每年盈利20多个亿,在石化行业,产品分多个品质,提高几个百分点就是另外一个品质,价格差异很大,这些企业产量相当惊人,上升1个百分点都很厉害。再举个例子,滴滴优化分配问题,因为他们一段时间内产生数据量太大,没有优化前,为了解决实时性问题,用了几百万硬件堆叠,用硬件解决性能问题,优化后,一台笔记本解决,所以学好数学还是很关键的。


大数据(bigdata),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

对于“大数据”(Bigdata)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。分析师团队认为,大数据(Bigdata)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。


什么是大数据呢?例如洛杉矶警方曾对以往的刑事案件做了统计,通过算法得出了第二天的高概率犯罪地点,然后有针对性的派警察去该处巡逻,从而使得当地的犯罪现象下降20%。这是大数据。

再比如,经济学家都认为股票无法预测,而一位剑桥大学毕业的博士搞了个公司,对有史以来几乎所有的证券交易的数据进行记录,然后通过算法进行分析。

他对什么国家政策、公司业绩、行业走向等等一眼都不看,100%地排除主观意志的,只根据计算结果来进行投资,最后赚了大钱。这是大数据。

大数据的精髓并不在于数据的精准和数量,而在于对内在规律的挖掘和对未来趋势的预测。其思路是:一个结果是有很多原因的,原因作用的强度可能是随机的,我们对其中作用的机理并不清楚。

我们难以找出规律性,但知道规律性就蕴含在结果数据之中,如果我们能建设合适的模型,写出好的算法,就有可能把这个规律性提炼出来,从而能科学地发现真相和预测未来。


麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合。


大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低的四大特征。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。大数据最核心的价值就是在于对于海量数据进行存储和分析;大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。大数据可以实现的应用可以概括为两个方向,一个是精准化定制,第二个是预测。比如像通过搜索引擎搜索同样的内容,每个人的结果却是大不相同的。再比如精准营销、百度的推广、淘宝的喜欢推荐,或者你到了一个地方,自动给你推荐周边的消费设施等等。


大数据是指那些数据量特别大、数据类别特别复杂的数据集,这种数据集不能用传统的数据库进行转存、管理和处理,是需要新处理模式才能具有更强大的决策力、洞察发现力和流程优化能力的海量、高增差率和多样化的信息资产。

现在社会发展速度非常快,科技也很发达,信息的流通和人们之间的交流也非常密切,而大数据就是这个时代高科技的产物。

现在大数据行业非常的受欢迎,人才需要求量也非常大,而且企业给大数据工程师的薪资比一般工程师的薪资也要高很多。

感兴趣的小伙伴可以学习一下


您好,很开心为您解答。大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。


“大数据是指那些数据量特别大、数据类别特别复杂的数据集,这种数据集不能用传统的数据库进行转存、管理和处理,是需要新处理模式才能具有更强大的决策力、洞察发现力和流程优化能力的海量、高增差率和多样化的信息资产。”


1分钟了解大数据

大数据本身是一个抽象的概念。从一般意义上讲,大数据是指无法在有限时间内用常规软件工具对其进行获取、存储、管理和处理的数据集合。

目前,业界对大数据还没有一个统一的定义,但是大家普遍认为,大数据具备Volume、Velocity、Variety和Value四个特征,简称“4V”,即数据体量巨大、数据速度快、数据类型繁多和数据价值密度低,如图1所示。下面分别对每个特征作简要描述。

图1大数据特征

1)Volume:表示大数据的数据体量巨大。

数据集合的规模不断扩大,已经从级增加到TB级再增加到PB级,近年来,数据量甚至开始以EB和ZB来计数。

例如,一个中型城市的视频监控信息一天就能达到几十TB的数据量。百度首页导航每天需要提供的数据超过1-5PB,如果将这些数据打印出来,会超过5000亿张A4纸。图2展示了每分钟互联网产生的各类数据的量。

图2互联网每分钟产生的数据

2)Velocity:表示大数据的数据产生、处理和分析的速度在持续加快。

加速的原因是数据创建的实时性特点,以及将流数据结合到业务流程和决策过程中的需求。数据处理速度快,处理模式已经开始从批处理转向流处理。

业界对大数据的处理能力有一个称谓——“1秒定律”,也就是说,可以从各种类型的数据中快速获得高价值的信息。大数据的快速处理能力充分体现出它与传统的数据处理技术的本质区别。

3)Variety:表示大数据的数据类型繁多。

传统IT产业产生和处理的数据类型较为单一,大部分是结构化数据。随着传感器、智能设备、社交网络、物联网、移动计算、在线广告等新的渠道和技术不断涌现,产生的数据类型无以计数。

现在的数据类型不再只是格式化数据,更多的是半结构化或者非结构化数据,如XML、邮件、博客、即时消息、视频、照片、点击流、日志文件等。企业需要整合、存储和分析来自复杂的传统和非传统信息源的数据,包括企业内部和外部的数据。

4)Value:表示大数据的数据价值密度低。

大数据由于体量不断加大,单位数据的价值密度在不断降低,然而数据的整体价值在提高。以监控视频为例,在一小时的视频中,有用的数据可能仅仅只有一两秒,但是却会非常重要。现在许多专家已经将大数据等同于黄金和石油,这表示大数据当中蕴含了无限的商业价值。根据中商产业研究院发布的《2018-2023年中国大数据产业市场前景及投资机会研究报告》显示,2017年中国大数据产业规模达到4700亿元,同比增长30%。随着大数据在各行业的融合应用不断深化,预计2018年中国大数据市场产值将突破6000亿元达到6200亿元。通过对大数据进行处理,找出其中潜在的商业价值,将会产生巨大的商业利润。


大数据通常是指最终的数据。举个例子:你用一个饭碗盛了一碗米饭吃完了,人家问你吃了多少?不可能告诉人家你吃了多少粒米饭或者多少口饭,你肯定的会回答我吃了一碗。这就是大数据。


您好,很开心为您解答。大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

大数据应用

大数据虽然孕育于信息通信技术,但它对社会、经济、生活产生的影响绝不限于技术层面。更本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析,而不是像过去更多凭借经验和直觉。具体来讲,大数据有以下作用。

1)对大数据的处理分析正成为新一代信息技术融合应用的结点。

移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。

云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值,大数据具有催生社会变革的能量。

2)大数据是信息产业持续高速增长的新引擎。

面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。

在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生出一体化数据存储处理服务器、内存计算等市场。

在软件与服务领域,大数据将引发数据快速处理分析技术、数据挖掘技术和软件产品的发展。

3)大数据利用将成为提高核心竞争力的关键因素。

各行各业的决策正在从“业务驱动”向“数据驱动”转变。

在商业领域,对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对,可以为商家制定更加精准有效的营销策略提供决策支持,可以帮助企业为消费者提供更加及时和个性化的服务。

在医疗领域,可提高诊断准确性和药物有效性。

在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。

4)大数据时代,科学研究的方法手段将发生重大改变。

例如,抽样调查是社会科学的基本研究方法,在大数据时代,研究人员可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

大数据涉及到各个行业,现在能学好大数据技术,加上自己持续的学习,高薪是肯定的。


原始地址:/resou/53976.html